单项选择题

设甲、乙两袋共装3个球. 每次通过掷骰子,当点数大于2时,抽中甲袋,否则抽中乙袋. 并从抽中的袋中取出一球放入另一袋. 最初甲袋有2球,乙袋有1球. 游戏进行到一袋中无球为止. 以Xn表示第n次抽取后甲袋的球数,{Xn,n≥0}是一时齐马尔可夫链,状态空间I={0,1,2,3}. 则最终甲袋无球而使游戏结束时的概率为( ). A. 2/3. B. 1/3. C. 6/7. D. 4/7.

微信扫码免费搜题