首页
题库
网课
在线模考
桌面端
登录
搜标题
搜题干
搜选项
0
/ 200字
搜索
问答题
设随机变量X的密度函数为
求:X的分布函数F(x).
答案:
解:
当x≤0时,f(x)=0,所以F(x)=0.
当x>0时,
因此
点击查看答案
手机看题
你可能感兴趣的试题
问答题
盒中有12只晶体管,其中有2只次品,10只正品,现从盒中任取3只,求取出的3只所含次品数X的分布列.
答案:
解:从12只晶体管中任取3只,次品数X的可能值分别为0,1,2.且有
所以取出3只所含次品数X的分布列为:
点击查看答案
手机看题
问答题
设一批产品共2000个,其中有40个次品,随机抽取100个样品,求样品中次品数X的分布列,分别按下列方式抽样:不放回抽样.
答案:
解:随机变量X的可能的值为0,1,2,…,40,由于是不放回抽样,所以由古典概型求概率的计算公式,X的分布列为:
点击查看答案
手机看题
问答题
从1,2,3,4,5五个数字中任取三个,X表示三个数中的最大数字,求X的分布列与分布函数.
答案:
解:X的所有可能值为3,4,5,并且
所以X的分布列为
分布函数为
点击查看答案
手机看题
问答题
设一批产品共2000个,其中有40个次品,随机抽取100个样品,求样品中次品数X的分布列,分别按下列方式抽样:放回抽样.
答案:
解:随机变量X的可能的值为0,1,2,…,40,由于是放回抽样,所以可看成做了100次重复独立试验,随机变量X服从二项分...
点击查看答案
手机看题
问答题
设有10件产品,其中8件正品,2件次品,每次从这批产品中任取1件,取出的产品不放回,设X为直至取得正品为止所需抽取的次数,求X的分布律.
答案:
解:X的可数取值为1,2,3.
;或
故X的分布律为
点击查看答案
手机看题
问答题
X~B(2,p),Y~B(3,p)已知
,求P{Y≥1}.
答案:
解:x取值为0、1、2
,即
,Y取值为0,1,2,3
点击查看答案
手机看题
问答题
若随机变量X的概率分布为
,试以分段函数的形式,给出X的分布函数.
答案:
解:
点击查看答案
手机看题
问答题
设10件产品中恰好有2件次品,现在连续进行非还原抽样.每次抽一件,直到取到正品为止,求:抽取次数X的分布列.
答案:
解:由于是不放回抽取,取到正品时就停止抽取,所以抽取次数X的可能值为1、2、3,并且有
则随机变量X的分布列为:
点击查看答案
手机看题
问答题
设10件产品中恰好有2件次品,现在连续进行非还原抽样.每次抽一件,直到取到正品为止,求:X的分布函数.
答案:
由于X的分布函数F(x)=P(X≤x)
①当x<1时,F(x)=P(X≤x)=0.
②当1≤x<2时...
点击查看答案
手机看题
问答题
设随机变量X的密度函数为
求X的分布函数.
答案:
解:分布函数F(x)=P(X≤x),
当x<0时,
当0≤x<2时,
当x>2时,
所以
点击查看答案
手机看题
问答题
设10件产品中恰好有2件次品,现在连续进行非还原抽样.每次抽一件,直到取到正品为止,求:P(X=3.5),P(X>-2),P(1<X<3).
答案:
解:P(X=3.5)=0.
点击查看答案
手机看题
问答题
连续型随机变量X的分布函数为
求:常数A的值.
答案:
解:F(x)在x=2处右连续
点击查看答案
手机看题
问答题
连续型随机变量X的分布函数为
求:P{0<X<1},P{1.5<X≤3}.
答案:
解:
点击查看答案
手机看题
问答题
设
问:A取何值时F(x)是某一随机变量的分布函数,并求出其密度函数.
答案:
解:根据分布函数的性质
,所以A=1,即
所以密度函数
点击查看答案
手机看题
问答题
设随机变量ξ服从参数λ=1的指数分布,求方程4x
2
+4ξx+(ξ+2)=0无实根的概率.
答案:
解:二次方程4x
2
+4ξx+(ξ+2)=0无实根的充要条件是判别式
Δ=(4ξ)
点击查看答案
手机看题
问答题
随机变量X的概率密度为
求:a的值.
答案:
解:
点击查看答案
手机看题
问答题
随机变量X的概率密度为
求:X的分布函数F(x).
答案:
解:
当x<0时,F(x)=0.
当0≤x
当x≥π时,
点击查看答案
手机看题
问答题
设随机变量X的密度函数为
求:常数k.
答案:
解:根据密度函数的性质
,所以k=2.
点击查看答案
手机看题
问答题
设随机变量X的密度函数为
求:事件“1≤X≤2”的概率.
答案:
解:
点击查看答案
手机看题
问答题
设随机变量X的密度函数为
求:X的分布函数F(x).
答案:
解:
当x≤0时,f(x)=0,所以F(x)=0.
当x>0时,
因此
点击查看答案
手机看题
问答题
随机变量X的概率密度为
求:系数A.
答案:
解:
故A=1.
点击查看答案
手机看题
问答题
一大批产品中优质品占一半,现每次抽取一件检验后再放回,问:连续抽取100次中取到优质品的次数不超过45次的概率约等于多少[此处已知标准正态分布函数值Φ(1)=0.841].
答案:
解:设每一次抽取中取到优质品为A,则
,设随机变量ξ表示100次抽到中A发生的次数,则ξ服从n=100,
点击查看答案
手机看题
问答题
随机变量X的概率密度为
求:P{0.5<X≤1.5}.
答案:
解:
点击查看答案
手机看题
问答题
若X在区间[0,2]上服从均匀分布,试求Y=X
3
的概率密度.
答案:
解:由于X在[0,2]上服从均匀分布。则X的概率密度
当y<0时,F
Y
点击查看答案
手机看题
问答题
设X~N(μ,σ
2
)且密度函数
,-∞<x<+∞.求μ,σ
2
.
答案:
解:
点击查看答案
手机看题
问答题
设X~N(μ,σ
2
)且密度函数
,-∞<x<+∞.若已知:
,求常数C.
答案:
解:∵正态密度曲线对称轴x=μ=2,∴当
时,
P{32≥C}=P{x<C},1-P{x<C}=P{x<C}
∴C=2.
点击查看答案
手机看题
问答题
若随机变量ξ~N(2,0.16),求:
[已知:Φ(2)=0.9772].P{1.2≤ξ≤2}.
答案:
解:
=Φ(0)-Φ(-2)
=Φ(0)+Φ(2)-1
=0.5+0.9772-1
=0.4772.
点击查看答案
手机看题
问答题
若随机变量ξ~N(2,0.16),求:
[已知:Φ(2)=0.9772].P{|ξ-2|>0.8}.
答案:
解:P{|ξ-2|>0.8}=1-P{1.2≤ξ≤2.8}=2-2Φ(2)
=2-2×0.9772=0.0456.
点击查看答案
手机看题
问答题
设
问φ(x)是否是某随机变量X的密度函数
答案:
解:∵
且φ(x)≥0,
∴φ(x)是密度函数.
点击查看答案
手机看题
问答题
设X~N(160,σ
2
),若要求P{120<X<200}≥0.80,试问允许σ最多为多少
答案:
解:
只须
反查正态分布函数表,知Φ(1.29)=0.90417
只须
,σ≤31.
点击查看答案
手机看题
问答题
某实验室有12台电脑,各台电脑开机与关机是相互独产的,如果每台电脑开机时间占总工作时间的
,试求在工作时间内任一时刻关机的电脑台数不超过两台的概率以及最有可能有几台电脑同时开机
答案:
解:设X表示任一时刻开机的电脑台数,则
X~B(12,0.8)
“关机的电脑台数不超过两台”,即“X...
点击查看答案
手机看题
问答题
设X~N(1,0.6
2
),求P{X>0}及P{0.2<X<1.8}.
答案:
解:
=1-Φ(-1.67)
=Φ(1.67)=0.9525.
点击查看答案
手机看题
问答题
已知X的分布律为
试求Y=2x
2
+1的分布律.
答案:
解:Y的可能取值为1,3,9,而且
P(Y=1)=P(X=0)=0.2,
P(Y=3)=P(2X
点击查看答案
手机看题
问答题
假设随机变量X在区间(1,2)上服从均匀分布,试求Y=e
2X
的概率密度f
Y
(y).
答案:
解:方法一:先求Y的分布函数.因X的密度函数为于是Y的分布函数F
Y
(y)=P(Y≤y)=P(e
点击查看答案
手机看题
问答题
设某条街道有三处红绿灯,其状态相互独立,且每处红、绿灯显示时间相同,随机变量X表示一汽车在此街道行驶中未遇红灯而连续通过的绿灯数,求X的概率分布及数学期望.
答案:
解:设事件A
i
=“汽车在第i个红绿灯处遇红灯”,i=1,2,3,则由已知条件
且A
点击查看答案
手机看题
问答题
已知随机变量X的分布列为
求:Y=2X+1的分布列.
答案:
解:因为Y的可能值为1,3,5,7,9,11,并有:
所以Y=2X+1的分布列为:
点击查看答案
手机看题
问答题
已知随机变量X的分布列为
求:Y=(x-2)
2
的分布列.
答案:
解:因为Y的可能值为4,1,0,1,4,9,并有:
所以Y=(X-2)
2
的分布列为:
点击查看答案
手机看题
微信扫码免费搜题